Please use this identifier to cite or link to this item: https://hdl.handle.net/10620/18507
Longitudinal Study: LSAC
Title: Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
Authors: Moreno-Betancur, Margarita
Lee, Katherine J
Leacy, Finbarr P
White, Ian R
Simpson, Julie A
Carlin, John B
Issue Date: Dec-2018
Journal: American journal of epidemiology
Abstract: With incomplete data, the "missing at random" (MAR) assumption is widely understood to enable unbiased estimation with appropriate methods. While the need to assess the plausibility of MAR and to perform sensitivity analyses considering "missing not at random" (MNAR) scenarios has been emphasized, the practical difficulty of these tasks is rarely acknowledged. With multivariable missingness, what MAR means is difficult to grasp, and in many MNAR scenarios unbiased estimation is possible using methods commonly associated with MAR. Directed acyclic graphs (DAGs) have been proposed as an alternative framework for specifying practically accessible assumptions beyond the MAR-MNAR dichotomy. However, there is currently no general algorithm for deciding how to handle the missing data given a specific DAG. Here we construct "canonical" DAGs capturing typical missingness mechanisms in epidemiologic studies with incomplete data on exposure, outcome, and confounding factors. For each DAG, we determine whether common target parameters are "recoverable," meaning that they can be expressed as functions of the available data distribution and thus estimated consistently, or whether sensitivity analyses are necessary. We investigate the performance of available-case and multiple-imputation procedures. Using data from waves 1-3 of the Longitudinal Study of Australian Children (2004-2008), we illustrate how our findings can guide the treatment of missing data in point-exposure studies.
DOI: 10.1093/aje/kwy173
Research collection: Journal Articles
Appears in Collections:Journal Articles

Show full item record

Page view(s)

16
checked on Oct 16, 2021

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.